3.289 \(\int \sqrt{2+3 x^2+x^4} \, dx\)

Optimal. Leaf size=141 \[ \frac{2 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} \text{EllipticF}\left (\tan ^{-1}(x),\frac{1}{2}\right )}{3 \sqrt{x^4+3 x^2+2}}+\frac{1}{3} \sqrt{x^4+3 x^2+2} x+\frac{\left (x^2+2\right ) x}{\sqrt{x^4+3 x^2+2}}-\frac{\sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{x^4+3 x^2+2}} \]

[Out]

(x*(2 + x^2))/Sqrt[2 + 3*x^2 + x^4] + (x*Sqrt[2 + 3*x^2 + x^4])/3 - (Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2
)]*EllipticE[ArcTan[x], 1/2])/Sqrt[2 + 3*x^2 + x^4] + (2*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF
[ArcTan[x], 1/2])/(3*Sqrt[2 + 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0423545, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {1091, 1189, 1099, 1135} \[ \frac{1}{3} \sqrt{x^4+3 x^2+2} x+\frac{\left (x^2+2\right ) x}{\sqrt{x^4+3 x^2+2}}+\frac{2 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{3 \sqrt{x^4+3 x^2+2}}-\frac{\sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[2 + 3*x^2 + x^4],x]

[Out]

(x*(2 + x^2))/Sqrt[2 + 3*x^2 + x^4] + (x*Sqrt[2 + 3*x^2 + x^4])/3 - (Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2
)]*EllipticE[ArcTan[x], 1/2])/Sqrt[2 + 3*x^2 + x^4] + (2*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF
[ArcTan[x], 1/2])/(3*Sqrt[2 + 3*x^2 + x^4])

Rule 1091

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a + b*x^2 + c*x^4)^p)/(4*p + 1), x] + Dis
t[(2*p)/(4*p + 1), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \sqrt{2+3 x^2+x^4} \, dx &=\frac{1}{3} x \sqrt{2+3 x^2+x^4}+\frac{1}{3} \int \frac{4+3 x^2}{\sqrt{2+3 x^2+x^4}} \, dx\\ &=\frac{1}{3} x \sqrt{2+3 x^2+x^4}+\frac{4}{3} \int \frac{1}{\sqrt{2+3 x^2+x^4}} \, dx+\int \frac{x^2}{\sqrt{2+3 x^2+x^4}} \, dx\\ &=\frac{x \left (2+x^2\right )}{\sqrt{2+3 x^2+x^4}}+\frac{1}{3} x \sqrt{2+3 x^2+x^4}-\frac{\sqrt{2} \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{\sqrt{2+3 x^2+x^4}}+\frac{2 \sqrt{2} \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{3 \sqrt{2+3 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0343925, size = 102, normalized size = 0.72 \[ \frac{-i \sqrt{x^2+1} \sqrt{x^2+2} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{x}{\sqrt{2}}\right ),2\right )+x^5+3 x^3-3 i \sqrt{x^2+1} \sqrt{x^2+2} E\left (\left .i \sinh ^{-1}\left (\frac{x}{\sqrt{2}}\right )\right |2\right )+2 x}{3 \sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[2 + 3*x^2 + x^4],x]

[Out]

(2*x + 3*x^3 + x^5 - (3*I)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*EllipticE[I*ArcSinh[x/Sqrt[2]], 2] - I*Sqrt[1 + x^2]*Sq
rt[2 + x^2]*EllipticF[I*ArcSinh[x/Sqrt[2]], 2])/(3*Sqrt[2 + 3*x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.004, size = 121, normalized size = 0.9 \begin{align*}{\frac{x}{3}\sqrt{{x}^{4}+3\,{x}^{2}+2}}-{{\frac{2\,i}{3}}\sqrt{2}{\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}}+{{\frac{i}{2}}\sqrt{2} \left ({\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) -{\it EllipticE} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+3*x^2+2)^(1/2),x)

[Out]

1/3*x*(x^4+3*x^2+2)^(1/2)-2/3*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticF(1/2*I*x*2^
(1/2),2^(1/2))+1/2*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*(EllipticF(1/2*I*x*2^(1/2),2^(1
/2))-EllipticE(1/2*I*x*2^(1/2),2^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 3 \, x^{2} + 2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{x^{4} + 3 \, x^{2} + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 3 x^{2} + 2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+3*x**2+2)**(1/2),x)

[Out]

Integral(sqrt(x**4 + 3*x**2 + 2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{x^{4} + 3 \, x^{2} + 2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 2), x)